Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
08047 08052 92258 30724 10826 77765 73964 38070 56392 63260 75902 81990 00438 28704 11821 02480 79226 96564 20570 64244 54896 11670 73909 33255 85778 30278 09320 78318 21708 34133 87818 97632 24338 69530 76769 70353 12448 11377 57698 33158 32260 52259 59101 81805 52750 16497 14261 97696 85959 99216 44059 99442 32311 30402 64784 19420 50916 63967 20949 05343 54891 91812 43103 46815 31669 82888 30642 26901 88312 47260 59620 98681 21824 25169 15567 86821 14460 01092 51297 14129 54045 42811 69721 53121 79281 65467 31660 02582 50062 20629 88658 89130 42785 10354 40796 93778 70665 26250 19499 03492 29045 13538 95356 87764 65709 60114 10925 00162 76195 10614 38552 04902 24108 05473 63180 28406 86432 44990 90161 35866 23842 78390 78071 32806 76017 17886 96520 91643 81952 77743 08967 03253 25271 38337 80530 53531 04540 35221 10799 24953 28579 73187 91652 23141 36774 65327 90062 28423 44389 97096 55914 72398 12881 15374 54813 39494 45210 42533 25902 93537 06153 15490 64670 29308 67615 49781 30767 49107 78943 28615 80815 64319 62238 16938 26222 21971 32667 00499 15993 56297 43777 49910 44542 65301 57804 09707 84509 12320 40991 12418 44566 52584 83895 17618 52234 84781 46702 75996 61693 27619 29542 18419 86598 21386 67796 69990 57886 54517 52413 89113 06596 15152 75220 31556 71672 67701 99236 39514 32784 54408 53983 55668 68137 21909 55801 62250 37282 72799 53158 45106 88932 42190 96963 82759 93772 99278 35879 60468 02271 73903 36637 09294 27497 08113 29344 70161 52927 32724 77801 82919 65264 68885 74812 00407 12240 54638 62498 27512 85442 96485 77606 85237 28110 45945 21829 99761 67963 01120 57111 16499 75000 33255 25962 39168 44320 38306 96773 93849 03934 13493 34125 18048 47572 58873 94103 74760 92501 03895 44609 91529 62336 58965 10673 24513 94852 92010 44767 47548 74795 30037 22117 66206 91698 85698 61016 56859 22692 08855 68134 30745 40316 63135 08833 23026 45334 27500 02481 06852 24544 22806 42761 32426 33591 63365 42983 91060 04781 33509 06402 04247 79894 89154 21523 37715 67992 84357 82422 40493 28236 22886 34050 08974 77700 34774 42550 75977 24176 77889 90571 24809 23994 64494 97577 28327 64831 12808 65161 13003 73525 23568 47357 47982 48884 81597 45954 59151 19505 82357 30805 68194 26579 83523 85146 56661 31709 81534 75901 55027 49722 13166 48998 56755 06476 82086 49684 57359 21682 10420 67832 18465 16707 15312 08259 56878 47391 10489 86033 58638 61863 32823 46791 18087 83344 93891 12048 01931 17970 56542 49510 38301 87596 36456 68387 30815 87616 28707 39706 97645 69768 59326 41622 35574 49952 61865 29732 09060 41040 78957 32387 64302 10690 88879 71005 68298 64157 57116 05381 72909 52106 12922 04003 03923 03425 50883 39363 75115 83038 57481 08267 27312 74714 62651 77154 92453 88886 16353 52401 82654 95455 90125 75641 04268 81612 03651 44071 96951 34643 76323 55770 97720 49743 03799 80005 30019 62833 59573 52550 17779 08367 21533 95994 24483 02146 23520 65055 17227 49133 31901 16892 55783 76262 47119 06419 06661 90254 30264 06615 82172 60427 54635 53839 04489 26507 82298 18141 94713 31445 65651 98575 86932 79228 73988 43511 67284 17688 45058 95949 38022 46319 61632 63829 06574 49086 53062 15346 99606 52241 21843 99261 02085 07133 95180 90214 21341 98021 01544 59035 76131 74887 72242 68061 10699 11247 67971 91443 33840 86965 30390 60461 82962 96068 58674 33837 13150 79551 11081 93048 11227 83198 31513 62635 34815 40388 01081 55519 76401 79911 14662 43314 52398 58782 82470 51635 17205 20047 56608 80415 02276 75603 82641 49216 80173 14005 76150 67542 53638 33283 24300 30149 69650 98749 12399 37361 58488 25815 75463 40380 97794 87803 74778 11601 01638 48756 99461 39920 34576 21255 93024 51052 50716 49226 04936 52840 57780 15757 67186 05568 06162 75906 95844 17275 03000 14520 17625 64065 51228 29040 21451 35422 13645 37320 35015 04522 01977 10435 26339 23542 90936 30495 30342 43979 57287 73460 00400 61956 43906 16946 84906 88540 48847 73046 28838 45050 39401 46135 00317 83371 91160 15688 42171 31270 52079 44088 48499 62701 31540 09442 66230 93126 14411 63393 21689 99821 00113 13928 72157 67191 66679 33199 82436 57083 59819 90328 26407 04099 06980 09221 13600 35905 56410 51384 40748 18548 41221 23732 68356 26765 68451 11404 22259 39297 33124 35572 20190 59203 57318 36258 23334 59169 54222 80141 12900 51823 17201 93376 91677 85048 33860 19401 10599 62292 25102 01753 20306 87882 09196 91878 47709 37337 90836 81945 97551 52680 75202 62659 78968 62750 07028 06072 57055 28515 34660 73396 29424 13384 99120 47815 27772 78521 48167 92301 44438 03156 75362 32419 83970 29896 84129 64149 39685 35043 76819 86690 95230 23900 68769 60278 51150 51087 27368 88997 76444 65854 36119 28589 85133 82391 83699 19272 37817 75144 78025 43545 68244 99122 85314 09009 34866 35216 94145 56171 97408 60508 04526 91264 18422 43582 41950 44054 89860 64839 96463 50657 84628 61811 86724 61346 33151 99470 49065 73370 24937 65541 51561 88759 35140 90816 33083 97146 76119 94467 67369 83569 74002 54356 52082 61292 70252 02350 22871 29613 48224 44631 92438 56678 84730 07012 14599 87292 26603 05245 73342 75734 92258 40337 96898 43568 98252 18863 96795 62456 10852 98274 31927 61968 22594 57214 97611 62399 53845 90831 39656 32579 79366 31089 93418 72684 79876 92081 47869 22051 18615 40341 34655 91990 42903 90158 42161 23597 10705 23887 54574 70564 42193 37261 15942 06993 96308 09705 19239 60211 72325 99648 20430 68577 36411 64836 77528 64300 73192 07643 14660 81248 62312 45384 11129 87763 79999 05629 15477 44471 25624 46514 84545 87095 73264 02054 47540 34269 48269 52455 95091 20351 28817 19428 93318 53232 72484 86498 22892 97151 67801 44323 43096 80509 10819 60997 80890 28677 06670 77373 44969 21814 96133 27368 64834 77673 07192 83277 54846 59421 31602 26089 03291 08446 26448 40794 86446 02169 40711 36701 07637 36863 66829 92746 61303 35459 17260 27807 22061 80358 26041 96018 58764 71252 75359 07075 73566 07925 47102 71556 65985 98074 99432 71231 21965 90119 68341 54372 27938 31014 94216 56068 09886 49061 73401 43537 97406 61721 34760

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 5/23/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.