Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
18948 37850 15366 23901 43798 41351 95705 35348 77059 63761 86900 11494 24425 19244 52702 42336 72158 80268 81959 42577 32398 41663 96431 28189 13476 09685 83599 17978 15226 16079 54481 60144 49301 57140 26440 83842 84481 57776 31001 75749 16989 60572 46662 81622 65799 39849 56705 32865 92954 40732 32011 98087 48876 43207 38868 59667 42676 51186 71792 15316 37471 06570 11328 04640 70695 28310 06874 60702 99409 76471 84486 86584 70615 41294 79691 56950 16572 57257 95303 44610 75102 42139 84235 72078 34909 61085 57307 88141 05885 15661 16063 69416 14428 57925 10583 46915 23754 29485 22294 57606 79204 25562 71784 20979 78563 84052 51611 40604 67369 99591 84121 30696 59228 62614 04257 67676 81122 23420 67371 66738 43728 81234 82038 83404 36723 98270 67870 40093 49103 38790 38325 77679 14492 33173 08520 32059 81457 66972 28048 35707 08816 94977 38784 44247 85956 80281 57702 88006 78142 58338 84686 48582 96829 26031 35343 60405 94978 55728 98814 37299 87367 34350 20590 24046 95899 27430 10320 72948 19922 68178 74626 45386 31538 71540 74916 38389 95912 73265 10194 36192 16592 93965 24877 86798 05814 28177 41601 03543 79821 58426 19041 91659 79171 94290 34716 99832 14049 36458 92809 96772 34584 65794 56971 72765 26158 57404 08143 66248 29720 19691 27360 15359 87097 58424 03569 34510 11309 65796 66439 15944 81876 34489 44175 56297 65139 96735 46328 08162 59567 88380 71611 56655 66067 37947 40708 20970 83303 80695 54090 80947 28006 97685 74823 28633 80284 79842 36387 44845 53936 17014 75481 00733 91768 12040 89841 84338 85898 19809 21050 52161 23078 11324 62351 05723 54996 62761 91461 93124 93598 69538 28381 35611 31395 85372 18210 79138 86776 86342 38956 70927 74323 59955 34352 61034 00121 19206 71664 28907 82073 41639 24507 34954 95207 33412 80655 97100 41996 18361 74856 92354 47667 52058 46642 83367 80511 60875 23144 70000 97199 06050 26901 65882 13094 72745 08677 99973 97562 84111 05269 43130 94287 40348 22324 59666 66579 82772 42147 83912 67693 82873 56517 21783 36135 56379 24498 77338 15979 02322 55251 04343 02177 67092 15847 82833 10873 33509 64081 20675 74714 34880 06282 80132 63166 94062 80127 29422 27820 87527 62453 19284 72711 34420 02070 84538 49628 10628 77574 70651 78425 87835 80155 85293 92336 97591 21419 74906 08286 20371 66189 26264 22204 99638 90327 93036 29335 80906 63540 47346 69554 75802 57197 56340 97675 51129 77140 83744 78770 42928 21494 16429 08474 95541 63483 15974 58301 25674 59242 95226 45958 11457 80626 19867 30655 06511 73029 34969 33419 79005 38188 16565 82405 75723 42005 48206 83211 11123 47351 22524 14187 81404 71884 67798 46750 03564 70859 99511 90696 79464 44941 96919 64513 84892 73018 04606 90693 83623 70013 59055 16043 66484 69697 40203 57001 15414 32501 48006 69943 92529 78329 04005 46503 54183 44369 77882 33878 90030 67907 39030 80147 87088 94140 33108 04578 18800 08988 83609 92943 59099 96904 18420 17833 21468 23691 21384 83964 23001 44311 08866 98496 73471 35698 31310 66343 89388 54573 99808 10484 33063 20253 37655 17279 76669 22466 56920 06776 91307 54163 59999 28030 61065 69328 66188 79412 22081 65796 63235 53920 26608 93059 83910 09496 32074 85084 07566 64333 15145 18122 86699 17193 10788 93522 98512 92716 76334 45543 21478 11733 80538 74166 36902 86579 17645 02909 55484 41406 46450 61636 68879 57495 54361 94371 26264 43566 46463 92112 35898 31097 59579 50641 91681 94629 01331 53339 24726 97084 14206 78996 79909 60074 64617 34624 17443 59215 56964 13272 39433 44441 72698 76836 41442 85312 34385 63871 89053 41334 94764 22406 19429 57261 50815 67755 67879 83418 82816 65329 19420 21008 18412 38450 85337 92423 21670 01161 04746 36563 07147 16043 71161 29140 78951 77022 84050 27998 94803 17185 25401 43422 55100 41592 61286 33449 16977 85089 68418 24185 33369 95117 85721 55112 17075 39529 90887 49407 29821 39402 01937 09248 96320 26845 03792 36130 43334 27818 99826 76177 63743 69937 88434 90457 05598 15295 64592 50287 86191 18267 46423 57553 31114 08327 26754 90022 38322 97860 49683 71649 67196 14972 12141 67894 52606 61305 90452 06034 43972 94849 91896 20475 69328 37752 31276 23062 24382 09139 32474 98398 86582 82915 55018 24150 54176 70586 45643 16363 10276 29067 14852 99775 11920 93496 38483 03128 04132 35047 84264 79479 58990 43740 63385 51515 39683 36257 07053 81865 89577 88749 68056 68410 46274 94657 47330 64599 80681 47517 45514 24759 61064 48775 39518 74410 42117 40600 84087 05573 79023 63697 38355 97088 66513 40117 17418 59924 02934 81074 68889 07488 79308 19751 74464 50946 93394 69119 76482 19525 88753 04746 29490 05836 18809 72608 76806 36178 35913 21907 52078 65855 05402 62878 05850 99488 44666 49605 57120 36325 87206 87830 69910 40558 71700 67770 54821 36631 56065 21926 95600 29554 56517 07898 00699 50219 11638 16193 79842 25706 71433 03044 45583 74600 11396 48217 39872 27303 71573 37828 85616 71345 20623 72150 63241 21699 44878 98431 12254 16090 62413 68703 57808 35311 62099 22597 62264 48532 67675 95153 01749 83617 26801 49634 67725 22431 25129 35338 93548 21157 25361 70411 06031 55608 31310 49658 02006 91536 76968 77358 49887 79949 40562 25075 16233 77420 83623 14470 17310 91401 15044 25115 95653 50537 80143 27304 21630 99974 74727 39866 20003 21677 84153 12979 21490 79739 47393 35979 39331 90695 46093 70176 70845 18833 18639 06666 23998 96507 99215 49140 68963 69451 81872 21703 14680 67090 09583 01678 10423 97854 88313 77427 72360 69487 26075 31158 35118 34364 96996 46739 28340 59800 30380 42512 78254 23365 24767 29102 34230 33196 86999 92234 20347 73306 96282 00541 11953 73903 93248 38381 37228 06696 94014 63644 03746 05212 29252 90572 50040 10106 08245 97562 22159 39476 07953 59988 75237 84173 87072 08008 00052 28113 25100 09375 74587 93592 86401 77256 40599 11599 09260 03038 05171 17125 19954 14144 67286 69477 71809 56846 69380 97592 09265 04074 73912 70349 56937 88232 64921 91879 33678 59008 74590 21882 91644 66189 34809 20934 80353 67471 53741 20804 35747 61274 17377 19765 94259 44552 16103 02907 31871 95606 96265 87446 28180 81900 36725

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/20/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.